

SPECIALIST MATHEMATICS Teach Yourself Series

Topic 13: Forces - Statics and Dynamics

A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tssm.com.au E: info@tssm.com.au

© TSSM 2016 Page 1 of 7

Contents

Forces – Statics and Dynamics	3
Statics – types of forces	
Paying Questions	
Statics – Newton's laws of motion	 5
As it appears in Unit 4	 5
Review Questions	 5
Motion on an inclined plane	6
As it appears in Unit 4	6
As it appears in Unit 4	6
Review Questions	6
~	

Forces – Statics and Dynamics

In this topic we shall study and understand the various physical parameters associated with motion of an object – mass, weight, force, momentum. Newton's laws of motion are also discussed and some applications of these laws to real life situations will be studied here.

Statics – types of forces

As it appears in Unit 4

- Inertial mass property of an object that makes it difficult to change its state of motion
 - Is a scalar quantity
 - Usually measured in kilograms
 - Larger mass will have greater resistance to change in motion
- Momentum measure of an object's motion
 - Momentum = mass × velocity (p = mv)
 - It is a vector quantity
 - It is measured in kg m/s
 - It is collinear to velocity
- Force is a vector quantity and is measured in Newtons (N)
 - Field force includes gravity, weight and magnetic force
 - Applied force tension, compression, push, pull, normal reactive force
 - Resistive force friction and air resistance
- Resultant force sum of all forces acting on an object

$$R = F_1 + F_2 + F_3 = \sum_{n} F_n$$

•
$$F = \left| F \right| \cos(\theta) i + \left| F \right| \sin(\theta) j$$

•	Forces	in	equilibrium	_	resultant	force	is	zero
---	--------	----	-------------	---	-----------	-------	----	------

$$F_1 + F_2 + F_3 = 0$$

- Remember
 - $1 N = 1 kg m/s^2$
 - 9.8 N = 1 kg weight
 - $g = \text{gravitational acceleration } \underline{\text{usually}} \text{ assumed to be } 9.8 \text{ ms}^{-2} \text{ in specialist maths}$
 - Weight, W = mg (measured in newtons)

Review Questions

1. For the three forces $F_1 = 2i - j$, $F_2 = 3i + 2j$ and $F_3 = -i + 3j$, find

a. the resultant force R

b. the magnitude of the resultant force.

a. A particle of mass 3 kg moving with a velocity of 3 m/s collides into a wall and rebounds with a speed of 2 m/s in the opposite direction. Find the change in momentum of the mass.

	fast' elephant of mass 900 kg accelerates down a straight from a speed of 30 km/h to a f 60 km/h in 5 seconds. Find the change in momentum of the elephant.
•	
Statics - No	wton's laws of motion
As it appears in	
	First law of motion - The Law of Inertia
	An object will maintain its state of constant velocity motion or rest unless acted upon by a resultant force that is not in equilibrium.
•	Uniform rectilinear motion – velocity is constant
•	Constant velocity – zero acceleration and zero resultant force.
•	Second law of motion - The Law of acceleration
	When the resultant force is non-zero, it will be equivalent to an object's mass times its acceleration. $(R = ma)$
•	Third law of motion - The Law of action and reaction
	For every action there is an equal and opposite reaction
Review Questions	
3. A Net force of	20 N acts on a mass of 3 kg, which is initially at rest. Find:
a. the magr	nitude of the acceleration

© TSSM 2016 Page 5 of 7

Solutions to Review Questions

1.

a.
$$\tilde{R} = \tilde{F}_1 + \tilde{F}_2 + \tilde{F}_3$$

= $2\tilde{i} - \tilde{j} + 3\tilde{i} + 2\tilde{j} - \tilde{i} + 3\tilde{j} = 4\tilde{i} + 4\tilde{j}$

b.
$$\left| \frac{R}{R} \right| = \sqrt{4^2 + 4^2}$$

= $\sqrt{32}$
= $4\sqrt{2}$

2.

a.
$$\Delta p = my - mu = 3 \times 2 - 3 \times (-3) = 6 + 9$$

= 15 kg m/s

b.
$$30 \text{ km/h} = 30 \div 3.6 = \frac{50}{6} \text{ m/s}$$

 $60 \text{ km/h} = 60 \div 3.6 = \frac{50}{3} \text{ m/s}$
 $\Delta p = mv - mu = m(v - u)$
 $= 900 \left(\frac{50}{2} - \frac{50}{6} \right) = 7500 \text{ kg m/s}$

3.

$$\mathbf{a.} \quad R = m \, a \, \mathbf{i}$$

$$20\,\underline{i} = 3a\,\underline{i}$$

$$a = \frac{20}{3}$$
 m/s²

b.
$$u = 0, a = \frac{20}{3}, t = 4$$

$$v = u + at$$
$$= 0 + \frac{20}{3} \times 4$$

$$=\frac{80}{3}$$

$$=26\frac{2}{3} \text{ m/s}$$

c.
$$s = ut + \frac{1}{2}at^2$$

= $0(4) + \frac{1}{2} \times \frac{20}{3} \times 4^2$
= $\frac{320}{6}$
= $53\frac{1}{3}$ m

